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Abs t rac t -Th i s  study shows how the optimal control theory for distributed parameter systems can be implemented 
for a problem of tubular reactor with axial dispersion described by partial differential equations. Two methods are 
implemented. One is based on differential equation approach and the other is based on integral equation approach. 
It was found that the approach with partial differential equations is preferable to the one with integral equations 
for the type of problems treated in this study. Computa|ion algorithms and programs for both cases are developed. 
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INTRODUCTION 

Process dynamics of many control problems are described by 
ordinary differential equations (ODEs) while many other problems 
of process control are described by partial differential equations 
(PDEs). The former problems are called lumped parameter sys- 
tems (LPSs) and the latter are called distributed parameter sys- 
tems (DPSs). The optimal control of DPSs, compared to LPSs, gives 
rise to many additional complexities because of the ir, teractive 

nature of the variables distributed in time and space. 
There are two major approaches for the optimal contrel synthe- 

sis for DPSs [Wang, 1985]. One approach is to use the'. original 
PDEs and apply an appropriate maximum principle derived for 
the PDEs. The other is to convert the PDEs to integral equations 
(IEs) by means of Green's function technique, and then the opti- 
mal control is obtained by applying a maximum principle devel- 

oped for the IEs. 
In some of the early work on optimal control of DPSs EBansal 

and Chang, 1972; Wang, 1985] theory of maximum principle for 
specific PDE systems was developed. Some generalized necessary 
conditions were reported by Zone and Chang E1972], Zone 
[-1973], and Wang [1985]. The IE method was formulated by 
Butkovskiy [1969] for the first time and extended 3y Wang 

E1985] for the general case. 
Although a considerable amount of theory has been developed 

in the past, this has not been reflected sufficiently into the indus- 
trial applications. This seems to be due to the lack of real-time 
experience with theory and the complexity of modern chemical 
processes. There is, therefore, a great merit to investigate the 
application of optimal control theory for DPSs. 

In this study, we apply the maximum principle dew,loped by 
Wang E1985] to a tubular reactor problem for two different cases, 
a single state and a two state variable case. We developed algori- 
thms and computer programs for the optimal control computa- 
tions. In doing so, we compare two different approaches, namely, 
one with PDEs and the other with IEs. 

*To whom all correspondences should be addressed. 
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THEORY OF OPTIMAL CONTROL FOR DISTRIBUTED 
PARAMETER SYSTEMS 

!. Problem Statement 
The dynamics of the general system of nonlinear partial differ- 

ential equations can be described by the following form: 

0v Lv+Nv (1) 
0t 

The initial and boundary, conditions can be stated as 

I.C.: v(x, t,,)=v,,(x) (2) 

B.C.: Ai(&v;c?x,,t)=Ci(6~v, u3,, u~; ax,, t). (3) 

In Eq. (1), L represents a linear partial differential operator 
with order l and N a nonlinear operator with order 2k(k<l). L 
and N can be stated using the multi-index notation as 

L v -  ~ (-1)~'D~v (4) 

Nv= Z (-1)~D~'a~(x, t; Sky, u~(x, t), u2(t)). (5) 
t~  <k 

In the above equations, v~R"  stands for the state variable vector; 
t~ t , , t t ] -=T the time variable: x-(xl,x2, "",Xv)r~R ~ the spatial 
variable vector; l = max( / -  1, 2 k -  1); 8k a set of all the derivatives 
of orders 0, 1,-.-k; u~(x, t) the domain control, u2(t) time depend- 
ent control and u~(0x,, t) ( i - 1 ,  2, ..', S) the boundary control; 
0x, a point on the boundary 0f~, and 0 ~  = U) ~01"),. And, a and 
[3 are multi-indices of ct--{oh, a~,"-, eta.} and [3-{[31, [3.,,'", [3~'} 

which have the length of Ictl= % ~k, I[3f = <l. 

The optimal control problem is to find controls u~(x, t)~U~, 
u2(t)~U~ and u:~,(0x, t)~U:~, which minimize the following objec- 

tive function J. 

J =  ( " [  F(v, ul; x, t ) d x  dt +.,fnFl(v; x, t,) dx 
j t , , j n  
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+ .s ',, en,Fe'(v' u:~,, u.,, 0x ,  t) d0x, d t+ .  ,,F:'(u' t )d t  (6) 

Here. Uh U2 and U~, are admissible control sets, F, tq, F~, (i= 1, 
2,"-, S) and F:~ are measurable scalar functions. 

This general nonlinear optimal control problem can be solved 
using a maximum principle in the manner of follnwmg two ap- 
proaches. 
2. Part ia l  Di f ferent ia l  E q u a t i o n  A p p r o a c h  

We briefly describe the maximum principle for the nonlinear 
partial differential equations of two-independent variables, which 
are common in most chemical engineering DPSs. The state equa- 
tion, Eq. (1). is expressed with two spatial variables by replacing 
x - (x l ,  x~)=(x, y) as 

Ov ft(v,~, v,.  v~,, v,, v,, u)+ f=,(v~, v . ,  v . ,  v~. v,, u). (7) 
0t 

For this case. the initial and boundary" conditions are given by 
the following form: 

I.C. v(x. y. t,)=v.(x, y) (8) 

B.C. v~=gl(v, u:~, 0) . . . .  (9) 

V, ~l(V, U:,,, 0)1, ~, (10) 

v, =g.:(v, u:~,, 0)1, ~,, (11) 

v,-g,(v, u:~,. 0)!, ,,. (12) 

Here, fl is the linear differential function and fz the nonlinear 
differential function; x~Ey.,, x,3 and ye=[y., y~]cl ' l  the spatial 
variables, t ~  [t,,, t , ] c  T the time variable, subscripts 0 and f indi- 
cate initial and final positions or time, respectively; vlx. y, t)c:R" 

vector, v~= flv_,0x ~**- and v . , - 0 x d y  ; .  f~' fz' g~' gl, the state 

ge, ge function vectors; u(x, y, t) the domain control, u:~ and tt:~, 
the boundary control. And, 0(t) is a spatially independent parame- 
ter governed by its own dynamics as 

de 
dt O(0, u:, t) (1,3) 

with the initial condition 0(to)=00 given; u2(t) a time-dependent 
control; and O vector function. 

The objective function to be minimized is also translated as 

f"f 'j).(u,v,v. J(v. u. z, w)-- v.., v . v . ,  v~,) dy dx dt 
8, x,~ . " 

+ f ] j , ]Fdv(x ,  y, t,)t dy dx 

?i. 4- ,] . {Fz~(v, u:~,. ue) , ,,, ~-~'=q(v. u> u.,), .,} dy dt 

a- " {F,z(v, u:~, Ue)l, ,,, + f~ee(v, u:~, u._,) , . t  dx dt 
t,, x .  

u,a t  , , ,  

where F. F~, F21, f~zl, Fee, ~'ez and F:~ are scalar functions. 
Let f=f i*fz ,  then Eq. (7) becomes 

0v =flu, v, v.  v~,, v,. v.. v~,). (1.5) 
at 

The Hamiltonians are defined by the following relations. 
Domain Hamiltonian: 

H = F  ~ Uf  (16) 

where ).=(X1, L 2 , ' " . ) , . , )  I is the domain costate vector. 
Time-dependent tiamiltonian: 

O F: + rd O {17) 

where n=(rh, rTe,'--,n.) ~ is the time-dependent costate vector. 
Bourldarv t t ami l t on i ans :  

at x x0 hl:::F< 0If  g' t18) 

a l l  " 
at x : x ,  I~,: ~'=,t - • T g ,  ,19) 

0H 
at y = y .  h: Fee--0~7 ge (20) 

at y = y ,  I~, := I:" .... OH g:~ ""1) 
- -  0 \  I ' ~  

The costate equation is defined as 

&_.(oH'/ +"~!l v aU} e H , t _ ( a H ) , + a U  t',2) 
e t  ' o ,, ..... 7,,,,: ..... 7 v ,  ,, , e v  e v  ' "  

The transversality conditions for the costate equations are defined 
, a s  

a ,1+0  0g _OF-" OH al l"  (' H H "t 
at x x,, av &v, \ (23) 

~ ) . - O v . ' ,  $,~. ~-v- 
^ 

at x x, 0F,.! OH + ( ~ }  .{'  0 H '  OH 0g, 
d v d v, ,d v, , ~ ) ,  av,., a \' (24) 

aFee OH "oH'} ( 0 H ) , + 0 H  0ge 
at y =  y,, O v  0~' , -  0x7,~' ' 0v~,, 0v.., Ov (25) 

0['L,~_ OH . (oH / - {~_H} oil  age (26) 
at y=y , ,  Ov - ~x~,, ' ,~v,,: ,', . , , ,  av,.,, av 

at t t, X: -aF ,  . (27) 
0v 

The costate equation for n of the time-dependent Hamiltonian 
is 

ag{ aH Or'_ ao_ ,,( ag{ OH l .... ~ --a~',~-I ,] dv 
at O0 .... O0 av~ ~ , " 

+f* ' (  dg~ OH ] 0 ;  oH I ,,) dx. (28) 
..... O0 a v , , . ,  ,,, oo d r .  ' ,  

Transversality conditions for  Fq. (28) are given by 

at t= t ,  n = 0  (29) 

and at all corner points, (x,. y,. t), (x., v. t), (x,, y,~, t) and (x,,. 
y,~. t), we have 

oH 0. (30) 

Necessa W conditions for the optimality (Maximum principle) 
can be stated as follows. 

Domain control: 

If u*(x, y, t) yields the maximum J for given z(t) and w(t), the 
domain Hamiltonian must attain its absolute maximum with re- 
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spect to u at u* almost everywhere on ~,• 
Boundary control: 

If z*(t) yields the maximum J for given u(x, y, t) and w(t), the 
boundary Hamiltonian must attain its absolute maximum with re- 
spect to z at z* almost everywhere on T. 

Time-dependent control: 

If w*(t) yields the maximum J for given u(x, y, t) and z(t), the 
time-dependent Hamiltonian must attain its absolute maximum 
with respect to w at w* almost everywhere on T. 
3. Integral Equation Approach 

In  this approach, the first step is to recast the system of the 
PDEs into that of IEs in various Sobolev spaces W~-P[~q• for 
l~p_<oc. The conditions for this step are stated as follows: 

Condition 1. The linear part of Eq. (1) subject to the homoge- 
neous boundary conditions are expressed as: 

0v - L v :  B.C. A,(SN: dx, t)=0. (31) 
0t 

Green's function G(x, t; ~. z) exists for Eq. (31) if the conditions 
in Eqs. (32)-(37) in W ~'~ space, for 2~p-<oo 

~' n D~D~(x, t: ~, r )?  dx dt<~o (32) 

H [, .ID~I)'/G(x, t: ~, z)? d~ dr<oc (33/ 

H ID~D?G(0x,, t: ~, O?  dOx, dt<oc (34) 
t '  c~gl~ 

f a[[)?G(x, t; ~, t,)? d~<o~ (35) 

H ,, 0a II)Xi(x, t; O~. r)?  dO~ dz<oo (36/ 

where I01, Ictl<k; and for l < p < 2  

ID~D~G(x, t; ~, ~)l_<M, tr and M>0 (37/ 

are satisfied. 
Condition 2. a,~ in the nonlinear function of Eq. (5) satisfies 

the Caratheodory conditions [9] in W'~ (p>l), which 'states that 
the derivatives of the function are measurable and continuous 
as well as they satisfy certain growth conditions. This is expressed 
simply as 

a, ~ CAR(p) ~ CAR*(p) ~ CAR**(p) (38) 

Condition 3. Functions in Eqs. (1)-(6) have partial derivatives 
with respect to argument functions and satisfy Lipschitz condi- 
tions. 

Condition 4. Control functions u~, uz and u:~ belong to admissible 
control sets U~, U~ and U:~, respectively. 

Once the above conditions are satisfied and the Green function 
is obtained, then the system of PDEs, Eqs. (1)-(5), is formulated 
into an integral equation as 

J" /" tr 
v(x, t)= Z / / a ~ ( r  ~; ~v, ul, u2)D~(x, t; ~, z) de d~ 

ai<~.l t o d n  

N ~ tt 

= 1 ,Ito, ld f l t  

+fnG(x, t; ~, t,) vo(~) d~ (39) 

where O, is a vector function. 
The Hamiltonians and the costate equations are evaluated as 

follows: 
We define a function Q as 

Q= fljoCk'( , ~1 G(~, ~; x, t)] 'o(v-t)d~ dr 

+J Ez~O G(5 t,; x, t)]rd~ 

'~ ~ t f  [W~(0F~, "c) G(d~a, ~; x, t )Jro(z-t)  dF~ dz (40) 
+ t[ Ofl~ 

where 

+JnEL~)  g,(~, t,; Ox,, t)]7d~ 

~ ~" r 5 t! q 
+ L / /  [~5(0~, ~) g,-(~, r: dx, t ) ] ' o ( z - t )  dd~ d~ (41) 

j I , ) t ' ~ d d f f  

and L, L, ~j are costates for domain, final time and boundary. 
respectively. 

Now, the Hamiltonians are defined as follows: 
Domain Hamiltonian: 

H(u,. u:; x, t)=F(u~; x, t)+f~(u~, u2; x, t)Q 

Boundary Hamiltonian: 

(42) 

h,(u:~,, uz; 0x,, t)=Fzi(u:~; Ox,, t)+C[(u:~,, uz; Ox,, t)h u, 

Time-dependent Hamiltonian: 

(43) 

f if(u1, s f0n ~(u~ ' O(u2; t)=F3(u2)+ u2) Q dx+ 2: u:)T, ddxi 

(44) 

The costates are obtained as follows: 
Domain costate equation: 

k(x, t)= 0_F_F + OfTQ (45) 
dv dv 

Boundary costate equation: 

t)= dF2, + dC(, 
~,(dxi, d v ( ~ ,  t) ~ ~ i  (46) 

Time-dependent costate equation: 
^ 

s  0h,00 (47) 

Maximum principles for the optimality are expressed as follows. 
Domain control: 

If u~*(x, t) minimizes J for given uz and u~, then H must attain 
its absolute maximum with respect to ul(x, t) at ul*(x, t), almost 
everywhere on f l •  

Boundary controls: 

If u3*(dx,, t) minimizes J for given u](x, t), u2(t) and u~(dxj, 
t), jr then 1l, must attain its absolute maximum with respect 
to u~ at u3,* on df l , •  

Time-dependent control: 

If the time dependent control u2*(t) minimizes J for given u~ 
and u.~, then O must attain its absolute maximum with respect 
to u:(t) at uz*(t) almost everywhere on T. 

April, 1995 
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, 'i"? Table i. Single state variable case with =}- .  ,i ,w[xa({, "c)-(~,, v)]z+[0a(,~, r)-O(~,  r)]" d{ dv 

PDE 1E 

f,f  State ax =L~x *-N[0({, v)? (1-- x) x(,~, r)=: (;:(~.. ":. z. tIN[0(z, t)][1 xlz. Ill dz dt 
0v equation 

Costate 
equation 

Hamiltonian 
function 

aX~ 
=L,~,~.~ N[O(r :)];L~+w[v,, xj 

at 

1 
H({, v)= ~-{u,(x,~--x)e-+-(0.~-0) e} 

+ L~{L,x+N[0(~. v)] (1 x)] 

'~q 1 N * Optimal 0., 0"= . . . .  ~ (  - x L  (0) 
condition ( 1 + ? ) 

t" : ,fl  ;'<(~. ~)::,'[.v., x] ,(L(~-. ~. z. t Y 0(~ :)~L~(z. t) dz ch t* 

1 

f ,? -'- ,,Ad(z. l) (},.(~. c. z. t)N[0(z, t)][1- x(z. t)]dz dt 

o., o . . . .  .f,,"f,' ;''(~ t),:;,(~ ~. ~:, t) .~to*(,. t)~[.~..-,:fz, t )~ .  - ...... , ,  . . . . . . . . . . . . . . . . .  (IZ [1 () (~' ~)]: ' dt 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  �9 

O P T I M A L  C O N T R O L  FOR T U B U L A R  R E A C T O R S  

Now. we calculate the optimal control for the tubul~r reactor 
problems using the theoD, stated above. We consider two cases: 
single state variable and two state variable cases. The nonlinear 
optimal control is obtained for the former and the linear optimal 
control for the latter. 
I. P r o b l e m  S t a t e m e n t  

We consider a tubular reactor of a non-isothermal axially-dis- 
persed one-dimensional model with a first-order irreversible exo- 
thermic reaction. The model in a dimensionless form is commonly 
represented by 

Mass balance: 

0 x _  1 O~x Ox 
0": Pe~ O{ e 0{ 

Ener~, balance: 

aO l o~O 

O~ Pe~ O{ ~ 

x) expI- -] (48) 

- b ( 0  ~0,.) (49) 

Initial conditions: ~x~-,=:0;  [0~ .... 0 

Bounda~'conditions: [O i Pe,x]~,} [ - ~  Pe~,0]~ 

(50). (51) 

(52). (53) 

where x is the conversion in the reaction: 9 the temperature: 
r the time: { the axial position: Pe, the Peclet number of the 
mass flow: Pe~. the Peclet number of the energy flow: Da the 
Damkohler number: 7 the activation ener.t,,3'. B and b arc the coef- 
ficients related to the heat of reaction and the heat transfer, re- 
spectively, and 0,, indicates the temperature of the reactor walt. 

For the single state variable case, we consider only the mass 
balance as the state equation. The reactor temperature is conskt- 
ered as the control variable which is revolved nonlinearty as 
shown in Eq. (48). The following objective function is chosen for 
this case. 

(56) 

For the two shtte variable case. the mass ;rod ener~ '  balances 
are both considered. "['he reactor wall temperature is chosen to 
be the control variable. Now, ~he control variable is inw~lved lin- 
early as shown in Eq. (49). The following ohjective function is 
minimized for the two state variable case. 

J=-:2- 0 wE(x~: x), :r] ~ d g + ~  . . . .  L0,({, "c)] :~ d{ dr (57) 

In Eqs. (56) and (57). w is a weighting, xA~. :) and 0;({, r) indicate 
the desired values. 

We now show how PI)E and IE approaches apply to each con- 
trol problem. 

2. Partial  D i f f erent ia l  E q u a t i o n  A p p r o a c h  
Since the original PI)Es are directly used. this approach is 

straightforward to implement. Folk)wing the theory stated above, 
we constructed Table 1 fl)r the single variable case and Table 
2 for the two variable case. These Tables provide state equations, 
costate equations, ttamittonian function and oplimal control equa- 
tion for each case as Eqs. (63)-(66) in Table 1 and Eqs. (71)-(76) 
in Table 2. 

For the PDE approach, we solve two sets of PDEs which are 
for the state and the costate variables as Eqs. (63) and (64) m 
Table l, and Eqs. (71)-(74) in Table 2. The initial and boundary 
conditions are given for the state equations as Eqs. (50)-(55). For 
the costate equations, so-called the transversality conditions are 
provided in Appendix according to Eqs. (23){27). 

The optimal control equation of the single variable case, Eq. 
(66) m Table 1, is from the necessary condition for the optimality, 

; oH  =: 0 { ) ; and that of the two variable case. Eq. (76) in Ta- 
r t*  

ble 2. is from ( ~ , ) ~ '  OH' ..... . 0. The optimal control equation for 

the single variable case is nonlinear in terms of the control varia- 
ble, 0". The solution is obtained by the optimization technique. 
For this calculation, most frequently used is the first-variation 
steepest-descent method [Chang, 1978~: 

0"  *(~. ~)~ 0~(~. v)* ~'[ 0I t  } (58) 
- "' O0 

Korean J. ('11. E.(Vol. 12, No. 2) 
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1 f t  I . 3  2 Table 2. Two state variable case with J= f, d ' " "  

PDE IE 

State . . . .  L,x+N(0)(1-x) x(~, r ) - I  IG~&-, r, z, t)Nk0(z, t)][1-x(z,  t)~ dz dt 
�9 O r  d ~  d , ,  - 

equation 

Costate 
equation 

Hamiltonian 
function 

30 
. . . . .  L~0+B N(0)(1 x)- b(0-0,,) 
Or 

0k~ 
Or 

01:~ = L,_,L_, - N(0)(1 -- x) (kl + Bk.,) bL, 
' 2 Or ( 1+ 

H({, " : )= -10 , /+k~[ I . , x+  N{0({, r)} (1 X)~ 

+ L~IL~0 + B N(0)(1 - x) -- b(0 -0,D} 

Optimal 0,, * b ;',, 
condition 

rill 0({, r) G~({, r. z, t){N~0(z, t)~[1-x(z, t)j b(0 0.)} dz dt 

f ~Ifl N(0)(Gliq + B GzL2) dz dt q) 
% 

d ~, dU~ 0'~ (,+V) 
1 {' :, & 

H(~, r)= - 20,, 2§ J .  ), {k,G,N(0)(1 - x) 

+L.,[G,N(0)(1 x) b(0-G.)]} dz dt 

0 a * - i  r ' t ,  l b . ]  j ,  ?'2 G2 dz dt 

where k is the iteration number and ~ is a weighting for the 
Hamiltonian gradient. 

With the PDE approach, we end up with a two-point boundary- 
value problem (TPBVP); the initial value PDE for the state plus 
the final value PDE for the costate. The solution technique for 
the PDEs is the numerical method of lines [-Schiesser, 1991] by 
means of DSS/2 [Schiesser, 1985]. The algorithm developed fl)r 
the computation is summarized as follows. 

Single Variable Case: 

(1) At k=0,  set 0~(~, r) fl)r O_<~_<r~ and 0_<~K1. 
(2) For 0_<z_<z,, solve the TPBVP* to obtain x({, r) and kl({, 

z). 

(3) Find the optimal control 0"({, z) by Eq. (66); 
if 0'({, r) is not equal to 0"({, r), repeat the whole steps 
from Step 2 

with k = k + l  and Eq. (58). 
TPBVP* 

(i) solve the state PDE, 
(ii) guess kl(~, 0), 
Off) solve the costate PDE and obtain k("'(~, z,) 
(iv) check that k~"~'(~, zr) satisfies the transversality condition 

Eq. (ADO), if satisfies, go to Step 3, 
if not, repeat Steps (iii) and (iv) by substituting k~(~, 0)== 
X/';'(~, ~,). 

Two Variable Case: 

1. At k=O, guess 0~*(~, z) for 0Kz_<~, and 0_<~_<L 
2. For 0~z_<z,, solve the TPBVP**. 
3. Find the optimal control 0~,*(~, r) by Eq. (76); 

if 0,~.*(~, O=0,*(~, r); the optimal control is obtained; 
if not, repeat from Step 2 by replacing k = k + l  and 0~,*(~, 

O ::0~*G ~). 
TPBVP** 

(i) solve the state PDEs, 
(ii) guess kl(~, 0) and k~(~, 0), 
(iii) solve the, costate PDEs and obtain k("t"(~, rJ  and kd~"(,~, 

"G), 

(iv) check that k("l'(~, z,) and Xj"'(~, ~,) satisfy the transversality 
conditions; 

if satisfies, go to Step 3, 
if not. repeat Steps (iii) and (iv) by substituting 
k~(~, 0)=w(x, ; -x)  .... and k2(~, 0)= k2~"(~, ~,). 

Solving TPBVPs usually takes most computing efforts for the 
PDE approach. For this study, a reasonable convergence was 
achieved by the back-substitution method as described with the 
algorithms. The most important and difficult part of the computa- 
tion. as far as we have experienced with the problem in this study, 
is to provide a proper guess for the initial value of the costate 
variables. The convergence is ve~' sensitive to the initial guess. 
3. Integral  Equat ion  Approach  

The first step in this method is to convert Eqs. (48)-(55) to 
integral equations using Green's functkm technique. Since the 
system satisfies the four conditions described previously with Eqs. 
(32)-(38), the Green's function for the problem exists. By means 
of Eqs. (39)-(47), we derive the equations for states, costates, Ha- 
miltonian and optimal control as shown in "Fables 1 and 2. 

The overall procedure for the IE approach can be divided into 
the construction of equation part and the calculation part. The 
former part leads to Eqs. (67)-(69) and (77)-(81). And the latter 
part focuses on obtaining the optimal control by solving Eqs. (70) 
and (82), which satisfy the necessary condition for optimality. 
Here, the calculation is easier than that of t:he PDE case. If the 
equation is linear, it is solved algebraically as described in the 
following example of Fredholm's second type integral equations 
in Eqs. (59)-(62). 

Integral Equation: 

F y(x, t)= .... G(x, t, {, r) [1 y({, r)] d{ dt 

f' flG(x, f' f'G(x t, ~, ~:) d~ d z -  1:,~,~) y(~,r) d~ dr 
o o 

(59) 

Using the trapezoidal rule, we get 

f ,'G(x, t. {, "r y({, r) d~ 

= A{ E G,(x, t, Oy:('c) + [G~(x, t, "c)y~('O + G.,(x, t, r)y./r)] 
2 

~60) 
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Fig. 1. Influence of ~ on the behavior of convergence of the objective 
function with iterations. 
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Fig. 3. Oplimal control at different reactor locations. 
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Fig. 2. Profile of Hamiltonian gradient with iterations. 
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Fig. 4. Transient trajectories of the state variable by the optimal con- 
trol at different reactor positions. 

Therefore, we have 

H .... G(x. t. ~, ~:) y({, ~) d{ dr 

= A t  I~ A~ E G,,(x, t)y,+ A{-{GI(X t)v~,+G.,;(x, t)y,.J 
r = 2  t 2 r 2 / , . 

t )y ,~+~-JO,  dx, t)y,~ ~G,,,~(~, t)y,,,,/ 

Ag"~ 1 A~ t)y.,,,;}] (61) + , e G;.,,(x, t)y; ,,? + ~ -  {G, ,,(x, t)y,.,,; + G,,, ,,(x. 

where ni is the number of integral grids in space and nj is tlhe 
number of integral grids in time. 

Applying Eq. (61) to Eq. (59), we finally write the following 
equation: 

(i-G)v=G; }'-([ G) 'G (62) 

where i is the identity matrix: $7; and G the (ni• by (ni• 
matrix. 

Eq. (62) contains the matrix inversion, which sometimes makes 
the computation difficult. 

The algorithm for this approach for the single variable case 
can be developed: 

(1) At k=0,  set (Y(~, v) for 0_<_r_<~,, and 0<_{~1. 

(2) For 0K':_<:. solve the IEs to obtain x(r r) and k~(~, ":): 
(3) Find the optimal control 0"(~, r) by Eq. (70): 

if @'(~, z) is not equal to 0"(~, z), repeat the whole steps 
from Step 2 

with k - - k + l  and Eq. (58). 

R E S U L T S  AND DISCUSSION 

Figs. 1-4 shows results from the single variable case based on 
PI)E and IE approaches. We see that two methods lead to identi- 
cal solutions. Fig. 1 shows the influence of ~: in Eq. (58) on the 
behavior of convergence of the objective function with iterations. 
For this problem, with too small ~, e.g., ~ :0.1 in the figure, the 
convergence becomes very slow, and with too large e, e.g., ~ = 1.9, 
the computation diverges. The best choice of e for this problem 
seems to be e -  1. The optimal a also depends on w in the objec- 
tive function. Since there is no set rule to determine ~ optimally, 
we determined the value empirically after some computational 
experience. 

Fig. 2 shows that the profile of Hamiltonian gradient in the 
reactor approaches zero indicating that the optimal control is 
achieved. This numerical computation verifies the theory of opti- 
mal control for DPSs. Fig. 3 shows the time-responses of the 
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Fig. 5. Decrease in the objective function with iterations. 
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Fig. 6. Optimal control profile change at different time. 

optimal control at different reactor locations. The control changes 
gradually with time. This optimal control also causes the slow 

state response as shown in Fig. 4. 
The results from the two variable case based on PDE approach 

are shown in Figs. ,5-7. The figures show the optimal coolant tem- 
perature profiles minimizing the objective function in Eq. (57). 

The time v runs from 0 to 5. 
Fig. 5 shows the decrease in the objective function with itera- 

tions. Fortunately, the simple back-substitution used for the two- 
point boundary wdue problem converged well. Fig. 6 shows the 
change of optimal control profile with position and Fig 7 shows 
the optimal control profiles at several reactor positiorLs plotted 
against time. From these figures, we see that there are ,,;ignificant 
differences in optimal controls at initial and final time depending 
on positions. The control changes more rapidly near the reactor 

entrance than near the exit, 
Although the results from both PDE and IE approaches are 

identical, as observed in the single variable case, the computation- 
al features are different. This is summarized in Table 3. 

The IE approach provides the exact solution, while the PDE 

approach leads to an approximate solution. In IE approach, the 
initial and boundary conditions of partial differential equations 
can be absorbed into one integral equation, which is finally' treated 
like an algebraic equation given in Eq. (62). Except for the matrix 

Table 3. Comparison of IE and PDE methods for a tubular reactor 
problem 

IE PDE 
Solution approach analytical approximated 
Equations involved algebraic equations differential equations 
Pre-calculation conversion needed direct treatment 

(PDEs--+IEs) (as PDEs) 
Time-consuming calculation of two-point boundary 

steps positive roots, value problem 
matrix inversion 

P~ogramming requires detailed adaptable to available 
programming, programs 

Computing time >15 min <3 rain 

inversion, the computation is simple for linear integral equations. 
For nonlinear integral equations, however, this is not the case. 

One of the time-consuming steps of the [E approach is in the 
determination of a sufficient number  of positive roots of the char- 
acteristic equation with sufficient accuracy. The value of m, which 
indicates the number  of the roots, heavily depends on Peclet num- 
ber. With less than 100 positive roots, e.g., m<100, the results 
of the open-loop simulation are not satisfactory for P e =  i0. For 
larger values of Pe, e.g., Pe>100, the numerical calculation be- 

comes excessive since it requires too many positive roots. On 
the other hand. this is avoided with the PDE approach. The two- 
point boundary value problem, however, can be a burden for the 
PDE approach. Thus the IE approach may be useful for the reac- 

tor of small Pe numbers. 
We found that the programming of PDEs with the numerical 

method of lines is easier and more flexible than that of IEs with 
the trapezoidal rule. Since the numerical met:hod of lines does 
the computation with one less dimension than uther conventional 
PDE solving methods, we can handle the problem using a smaller 
memory size. Even a PC/486 compatible can handle the computa- 

tion without difficulty. 
The overall computing time with the PDE approach is much 

less than with the IE approach. Therefore, it can be concluded 
that the PI)E approach for the optimal control of distributed pa- 
rameter systems is preferable to the IE approach at least for the 
type of reactor problems studied here. 
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C O N C L U S I O N S  

The optimal controls of a tubular reactor were obtained using 
maximum principles for the parabolic nonlinear partial differential 
equations and the integral equations. The maximum principles 
were used in the numerical computation to find the optimal con- 
trol for the cases of one state and two state variables. Computation 
algorithms and Fortran codes for both approaches ~e re  devel- 
oped. The method using the partial differential equation approach 
seems to be more preferable for the present type of tubular reac- 
tor problems. 

A C K N O W L E D G M E N T S  

0 .  : 

| : 
X : 

: 

r 

11 

s 

lure 
desired temperature profile in the reactor, dimensionless 
exterior temperature of the reactor wall. dimensionless 
t ime-dependent Hamiltonian function 
costate variable vector 
costate variables 
dimensionless length, axial location in the reactor 

:spatial dummy variable vector 
: diinensionless time 
:final time. dimensionless 
: costate variable 

:domain in R" 
: boundaw of domain 
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N O M E N C L A T U R E  

b :dimensionless parameter for the heat exchange 
B :dimensionless parameter for the heat of reaction 
Da : Damk6hler number  
CAR(p):class of functions satisfying Caratheodory property 
D"u :derivatives of function u 

F, F], F=,,, F:~: measurable functions in the objective function 
f. fb f~:measurable functions in the state equation 
G. GL. G2: Green's functions 

H : domain Hamiltonian 
h : boundarT Hamiltonian 
J : objective function 

L : l inear differential operator 
M : positive number  
N :nonl inear  differential operator 
p :positive number  used for Sobolev spaces 

Pe< :Peclet  number  of the mass flow 
Pe~ :Peclet  number  of the energy flow 
S : positive integer 
t : time variable 

u : domain control 
U :admissible control region 

v : state variable 
W ~'~ : Sobolev spaces 
w :a  weighting value in the objective function 

w : t ime-dependent control 
x :spatial variable, reaction conversion 
x,, :desired reaction conversion 

z : boundar3,' control, dummy variable 

G r e e k  L e t t e r s  
c~ :multi-index, {cq, eve,-., a,,}, eigenvalue for the mass bala- 

nce 

[ctl : length  of the multi-index a, .Y, a, 

13 :multi-index, eigenvalue for the energy balance 

y :dimensionless activation energy 
:weighting for the Hamiltonian gradient 

0 :spatially independent parameter, dimensionless tempera- 

S u p e r s c r i p t s  
k : iteration counter 

calc : calculated value 
* :optimal 
N : number  of spatial variables 
n : number  of state variables 
T : transpose 

S u b s c r i p t s  
d : desired property 
f : final property 
rn, n : eigenvalue counter 
o : starting position 
1 : related with the first state variable 
2 :related with the second state variable 
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APPENDIX 

Supplements for Tables 1 and 2: 

1 0 2 0 
L -  (A-l) 

Pe, 0~ ~ 0/~ 

L~= 1 0" 0 (A-2) 
Pe~ 0~ e 0~ 

1 0 2 O 
L,~-Pe~ 0{ ~ ~ 0~ (A-3) 

1 r 0 L~,2- + (A-4) 
Peo O~ z O~ 

N[0(,~, z)7 Da [" 0(,~, z) -1 
~= exp[- - - - ~  i 1 1 +  0 ( v (A-5) 

G,=2 e x p [ ~ - ( { - z ) - ~ e - ( v - t ) ] [  Z , . ,  pea . 
<,,'+ ~ -  + Pc, 

Pe . . . .  ~l" ~ + Pex . {a./ cosa.,{+vs,nct.,qf]o.., c o s ~ z  ~-SlrlCt,,,z}] (A-6) 

G=, = 2 e x p [ ~ -  tg - z~ - ~ -  (z -  t) peo~ 
, i 132+~_+pe  ~ 

a,.: m '~ positive root of 

( a ~ - ~ )  ( tanct)-Pe,  ct=O 

[3.: n 'h positive root of 

/ ' ~ . ,  Peo 2 
~13--~-)  (tan 13)-Peo 0=0 

Transversality Conditions: 
1. Single State Variable Case 

9.0: :r = 0 

(0)%=0)~ ~ 
0{ 

( kl = - Pex)q),:=, 
N 

2. Two State Variable Case 

(~-*)~-v w(x~- x)~= v 

(0X' =0),=o 
N 

(k~)~_~r = 0 

(A-8) 

(A-9) 

(A-10) 

(A-11) 

(A-12) 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

(A-17) 

(A-18) 
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